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Deep neural networks for predicting the affinity
landscape of protein-protein interactions

Reut Meiri,1,5 Shay-Lee Aharoni Lotati,2,5 Yaron Orenstein,3,4,* and Niv Papo2,6,*
SUMMARY

Studies determining protein-protein interactions (PPIs) by deep mutational scanning have focused mainly
on a narrow range of affinities within complexes and thus include only partial coverage of the mutation
space of given proteins. By inserting an affinity-reducing N-terminal alanine in the N-terminal domain of
the tissue inhibitor of metalloproteinases-2 (N-TIMP2), we overcame the limitation of its narrow affinity
range for matrix metalloproteinase 9 (MMP9CAT). We trained deep neural networks (DNNs) to quantita-
tively predict the binding affinity of unobserved wild-type variants and variants carrying an N-terminal
alanine. Good correlation was obtained between predicted and observed log2 enrichment ratio (ER)
values, which also correlated with the affinity of N-TIMP2 variants to MMP9CAT. Our ability to predict
affinities of unobserved N-TIMP2 variants was confirmed on an independent dataset of experimentally
validated N-TIMP2 proteins. This ability is of significant importance in the field of PPI prediction and for
developing therapies targeting these interactions.

INTRODUCTION

Protein-protein interactions (PPIs) play essential roles in diverse biological processes. Understanding how mutations in a protein’s sequence

modulate its interactions is important for decoding the evolution of protein-binding interfaces and for developing therapies targeting these

interfaces.1,2 On the basis of their contributions to PPIs, interfacial residues can be categorized as either hot spots or cold spots, where hot

spots are positions where the residues make a major contribution to the protein-protein binding free energy and cold spots are positions

occupied by amino acids that make suboptimal contributions. Thus, mutations in hot-spot positions may lead to a dramatic decrease in

the binding affinity of a specific PPI (e.g., Cukuroglu et al.3) and mutations in cold spots may enhance binding affinity (e.g., Shirian et al.4).

Numerous experimental mutagenesis approaches have been used tomap protein-binding interfaces, particularly thosemeasuring affinity

changes in purified variants with site-specific single mutations to alanine5 or those identifying binding epitopes by using affinity screens of

yeast-surface-displayed (YSD) protein libraries.6 However, both these approaches enable the analysis of only a limited number of positions

and mutations.7,8 Thus, to predict the affinity and selectivity of protein variants more accurately and on a much larger scale9 and to generate

more comprehensive affinity and specificity PPI landscapes,10,11 high-throughput affinity screens of protein libraries combined with deep

mutational scanning (DMS) have been developed and implemented.

Nonetheless, despite the promise of high-throughput approaches, they, too, have some limitations. First, DMS studies have focused

mainly on variants spanning a narrow range of affinities, which curtails the characterization of interactions within protein complexes having

wide binding landscapes (i.e., a broad range of affinities). This constraint on the range of affinities results from limitations of scale (library

size) and also from limitations in the signal detection abilities of the experimental techniques designed to probe the PPIs. Recently, however,

the use ofmultiple affinity sorting gates for screening protein libraries has enabled the discrimination between variants with similar affinities by

broadening the range of target affinities that can be detected and improving the accuracy of affinitymeasurements for individual variants.12–14

Second, DMS approaches are limited in their ability to experimentally map the binding affinity landscape of high-affinity complexes. Thus, to

accurately evaluate variants with high affinity for their target protein, a low target concentration—which may be difficult to follow—is used. In

contrast, high target concentrations may be appropriate for low-affinity but not for high-affinity variants (since they may result in saturated

binding signals). Therefore, a complete picture of the binding affinity landscape, i.e., identification of both affinity-reducing and affinity-

enhancing mutations, cannot be achieved in a single experimental affinity screen. Third, DMS enables only partial coverage of the mutation

space of a given protein. Since the search-space size increases exponentially with the number of tested residue positions in the amino acid

sequence of the protein, there is a combinatorial explosion in the number of possible protein variants that would have to be measured
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experimentally.15 This issue of partial coverage therefore constitutes a significant obstacle to progress in obtaining a comprehensive picture

of themutational landscape. Many investigations have thus focused solely onmutations in a single nucleotide, resulting in a significant reduc-

tion (approximately 70%) in the potential coverage of all feasible single amino acid substitutions. For example, the study of Livesey andMarsh

collected 31 datasets fromDMS experiments, but themajority of those datasets demonstrated only partial coverage of themutation space.16

As indicated earlier, full coverage of the mutation space is required to produce an accurate prediction of the affinities of variants spanning

a wide range of binding affinities. The need for full coverage is especially critical when only low-throughput affinity screens are feasible. Thus,

to impute this mutation space, a variety of computational methods have been developed to predict binding affinity based on the protein’s

amino acid sequence. These include four major approaches—each with its advantages and limitations—to produce predictive models for

protein properties (e.g., binding affinity): calculation-based empirical models, meta-predictors that integrate multiple model predictions

as input features, unsupervised models based on evolutionary information (that does not include any experimental measurements), and su-

pervised models based on experimental (assay-derived) datasets of protein variants.16,17 While unsupervised models can accurately predict

the effect of mutations on the inherent protein function, they fail to predict protein properties that have not been subjected to long-term

evolutionary selection.18 In a recent benchmark study, supervised methods emerged as the most successful in predicting protein functions,

which was demonstrated by their consistent ranking in the average-to-high range and their attainment of top correlation scores in 20 out of 31

datasets.16

Supervised methods have advanced significantly thanks to the rise of deep neural networks (DNNs), with convolutional neural networks

and graph neural networks being the most successful architectures.19 Envision, a stochastic gradient-boosting learning algorithm of sin-

gle-mutation effects, was trained on nine DMS mutagenesis datasets. Envision used 27 biological, structural, and physicochemical features

for each protein variant to predict the variant’s molecular effect. However, Envision’s predictions for variants with intermediate effects (e.g.,

moderate binding affinities) are poor, and its performance deteriorates when structural and evolutionary features are missing.20 Following

Envision, Song et al.21 pointed out that the lack of negative examples, i.e., variants with decreased functionality, in most DMS datasets makes

it difficult to directly estimate the impact of sequence on function. To tackle this problem, they developed a statistical sequence-function

model that showed good predictive performance on 10 DMS datasets of protein binding, folding, and enzymatic activity. However, when

trying to model epistatic effects, the model suffered from long runtimes when its complexity was increased. Gelman et al.18 benchmarked

various neural-network architectures (fully connected, sequence convolutional, and graph convolutional) trained on various DMS datasets.

They tested the limitations and dependence of the model’s performance on the number of training examples and the quality of the exper-

imental measurements. They suggested that it might be preferable to limit the overall quantity of unique variants examined as a means of

guaranteeing that each variant receives a sufficient number of sequencing reads for accurate functional score calculations.

Informed by the background described earlier, we sought to developDNN to comprehensively map PPIs and to accurately predict affinity-

enhancing or affinity-reducingmutations, not necessarily observed in library affinity sorts. To develop the ability to predict both observed and

unobserved variants over a broad range of affinities in tightly bound protein complexes, we took as a case study the complex of matrix metal-

loproteinase (MMP)9 with the N-terminal domain of the tissue inhibitor of metalloproteinases-2 (N-TIMP2). N-TIMP2 is the inhibitory domain

of TIMP2 that exerts its action by binding to the active site of MMPs. The wild-type (WT) form, N-TIMP2WT, exhibits sub-nanomolar affinity for

the MMP9 catalytic domain (MMP9CAT) (inhibition constant [Ki] value of 108.9 pM). The active site of MMP9, like that of all MMPs, comprises a

catalytic zinc ion chelated to three histidine residues (His-401, His-405, and His-411 in MMP9) and a catalytic glutamate residue (Glu-402 in

MMP9).22 The N-TIMP2–MMP9 interface was previously shown to be highly tolerant to N-TIMP2 residue substitution or incorporation of addi-

tional amino acids without impairing stability,23 making N-TIMP2 an ideal candidate for mapping binding-affinity landscapes of PPIs. Impor-

tantly, it has been shown that TIMP2 can inhibit MMP activity only when the N terminus of the Cys1 residue of the N-TIMP2 domain is free.24

For example, an alanine residue insertion followed by Cys1 disrupts secondary interactions that putatively stabilize the interaction of N-TIMP2

with theMMP active site.24,25 In this study, we leveraged this alanine insertion to generate anN-TIMP2 library comprising pairs of variants, one

with low affinity to MMP and the other with high affinity, thereby allowing us to expand the range of affinities identified in our affinity library

screens and to overcome experimental limitations in detecting a broad affinity range in the N-TIMP2–MMP9 complex.

The research strategy for this study thus comprised the following steps (Figure 1). (1) Two N-TIMP2mutagenesis libraries were generated,

one having variants with high affinities toward MMP9 (designated N-TIMP2LIB) and the other having variants with low affinities toward MMP9

by virtue of an insertion of alanine at the N terminus of N-TIMP2 (designated Ala-N-TIMP2LIB). (2) The two libraries were mixed in a 1:1 ratio

(designated N-TIMP2MIX), YSD, and subjected to fractional sorting by fluorescence-activated cell sorting (FACS) for binding to theMMP9 cat-

alytic domain (MMP9CAT). (3) The sorted library fractions were subjected to high-throughput sequencing (HTS) to determine the enrichment

ratio (ER) of each individual variant. (4) Models were trained to predict the ER and hence to enable accurate and quantitative prediction of the

impact on the binding affinity of N-TIMP2 variants that were not included or not observed in the libraries, and also to enable mapping of the

binding-affinity landscape of the N-TIMP2/MMP9CAT complex. (5) Finally, the predictions were validated experimentally by determining

the MMP9CAT inhibition potency of N-TIMP2 variants having a large range of affinities for MMP9CAT.
RESULTS
Sorting the mixture of N-TIMP2LIB and Ala-TIMP2LIB libraries that bind to MMP9CAT

To comprehensively and accurately determine, using a single sort, the Ki values of N-TIMP2 variants spanning a large range of affinities for the

catalytic domain of MMP9 (i.e., MMP9CAT), we generated—and then mixed together—two coding-sequence libraries. We first generated

the high-affinity N-TIMP2LIB library with random single and multiple mutations at seven residue positions (i.e., 4, 35, 38, 68, 71, 97, and 99,
2 iScience 27, 110772, September 20, 2024
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Figure 1. Research strategy for identifying affinity-enhancing and affinity-reducing mutations

(A) Two N-TIMP2-derived libraries, designated N-TIMP2LIB (high affinity for MMP9) and Ala-N-TIMP2LIB (containing an Alanine insertion at the N terminus of the

protein; low affinity for MMP9), were generated.

(B and C) The two libraries were mixed, and the mixed library was yeast surface displayed and subjected to flow cytometry screening for affinity to MMP9CAT, the

catalytic domain of MMP9, with (C) variants of N-TIMP2LIB having higher affinities for MMP9CAT than those derived from Ala-N-TIMP2LIB.

(D) The library was sorted using three gates, each having different affinities to MMP9CAT. The fractions were then analyzed by next generation sequencing (NGS,

also termed HTS). Based on the scattering of the N-TIMP2LIB and Ala-N-TIMP2LIB variants and that of unmodified N-TIMP2 and Ala-N-TIMP2 proteins,

respectively, we determined which gate to use for the analysis of each library. To find affinity-enhancing mutations in N-TIMP2LIB, we used Gate 2 and Gate

1, which had N-TIMP2-like affinity and higher affinity than N-TIMP2, respectively. Similarly, we used Gate 3, which had Ala-N-TIMP2-like affinity, and Gate 2,

which conferred higher affinity compared to Ala-N-TIMP2, to identify affinity-enhancing mutations originating from Ala-N-TIMP2LIB.

(E) Computational analysis of theNGS results was followed by calculation of the frequency of each variant in each of the three gates. The enrichment ratio (ER) was

calculated separately for N-TIMP2LIB between Gate 1 and Gate 2, and for Ala-N-TIMP2LIB between Gate 2 and Gate 3.

(F) We generated a sequence–log2 ER dataset to train a DNN to predict the log2 ER of protein variants.

(G) Based on the log2 ER values for each of the two libraries (i.e., N-TIMP2LIB and Ala-N-TIMP2LIB), a neural network was trained to accurately and quantitatively

predict the impact of unobserved potentially interacting mutations on the binding affinity. A matrix of one-hot encoded seven binding residues is given as input

to a cascade of two fully connected layers with a rectified linear unit (ReLU) activation function, and finally through a single neuron with linear activation. The

output is the predicted log2 ER of each variant.

(H) By combining the aforementioned two trainedmodels, we revealed a variety of mutations at the interface of N-TIMP2 that modulate the binding affinity in the

high-affinity complex, N-TIMP2/MMP9; these mutations would not have been discovered unless the two models were used together.
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based on the N-TIMP2WT PDB: 1BUV) located in the N-TIMP2/MMP9CAT binding interface; all positions lie within 4 Å of the MMP structure,1

and six of them (namely 35& 38, 68& 71, and 97& 99) are coupled in pairs as a result of their close proximity (<5.7 Å) to one another.26 All seven

positions were previously shown to be highly tolerant to mutagenesis.1,23 We then generated the low-affinity Ala-N-TIMP2LIB library in which

an alanine residuewas added at theN terminus of eachN-TIMP2 variant (Figure 2A). The need to generate two separate libraries derived from

the intrinsic high affinity of N-TIMP2LIB to its target, MMP9CAT, which makes it difficult to identify in the same experiment mutations that in-

crease or decrease the affinity of N-TIMP2LIB to the target. The low-affinity library, Ala-N-TIMP2LIB, allowed us to screen against a concentra-

tion of the target that is of the same order of magnitude as the Ki of the N-TIMP2/MMP9CAT complex. To obtain a broad range of affinities, we

combined the N-TIMP2LIB and Ala-N-TIMP2LIB to yield the N-TIMP2MIX library, with a total size of 4.3 3 105 variants, which is three orders of

magnitude larger than the theoretical diversity that could be obtained from random mutagenesis at single positions.

We then used a YSD platform to sort N-TIMP2MIX library variants according to their affinity to MMP9CAT. Using the YSD pCHA plasmid, we

displayed N-TIMP2MIX library variants on the Saccharomyces cerevisiae yeast surface as fusion proteins with the Aga2p/Aga1p system. This

display allows theN terminus of the variants, which lies in the binding interface and is thus crucial for binding toMMP9, to be freely exposed to

the solvent and available for binding toMMP9CAT (Figure 2B). Thereafter, by using flow cytometry of N-TIMP2MIX, we conducted a preliminary

sort (designated Pre-sort) to exclude variants with low expression and very low affinity to MMP9CAT (which probably indicates protein misfold-

ing); the Pre-sort provided an N-TIMP2MIX library with variants having a wide range of affinities to MMP9CAT (Figures S1A and S1B).

We then subjected the N-TIMP2MIX library to fractional sorting to collect three sub-populations with different affinities toMMP9CAT; to this

end, three diagonal sorting gates were applied according to the binding and expression signal distributions of the different variants in the

N-TIMP2MIX (Figure 2C). We chose the MMP9CAT concentration (100 nM) for the fractional sorting to be in the range between the equilibrium

binding constants (Ki values) for binding of N-TIMP2 andAla-N-TIMP2 toMMP9CAT (Table 1), such thatmaximal scattering of the affinity signal

of the library members was obtained. We discriminated between three sub-populations with different binding affinities to MM9CAT, i.e.,

higher affinity than N-TIMP2WT (Gate 1), WT-like affinity (Gate 2), and lower affinity than N-TIMP2WT, which was also comparable to the

Ala-N-TIMP2 affinity (Gate 3) (Figure 2C). We determined the WT-like affinity gate according to the flow cytometry signal that was produced

by N-TIMP2WT binding to MMP9CAT under the same conditions, i.e., MMP9CAT at a concentration of 100 nM (Figure S1A). An additional flow

cytometry analysis of the fractionated sub-populations was used to verify the differences in the binding signal between the three gates (Fig-

ure S2). It was subsequently found that each variant in the sorted N-TIMP2MIX library was distributed differently in the population in terms of

affinity to MMP9CAT, which means that each variant was enriched in a specific gate and was depleted in the others.
Comprehensive HTS analysis of N-TIMP2 interface mutations

To determine the affinity for MMP9CAT of each variant in N-TIMP2MIX and hence to map the N-TIMP2/MMP9CAT binding interface, we ex-

tracted the DNA plasmid of the pre-sorted N-TIMP2MIX library and the three sorted N-TIMP2MIX fractions and performed NGS analysis of

the libraries using Illumina MiSeq. Most (�98%) of the total sequenced read pairs (381,481, 394,278, 662,060, and 459,124 reads for Gate

1, Gate 2, Gate 3, and Pre-sort, respectively) passed our quality filtering and merging processes. Thereafter, we translated the sequences

into their respective amino acid sequences by using the N-TIMP2WT sequence (PDB: 1BUV) as a reference. We filtered out short reads

and reads with stop codons: thus, for N-TIMP2LIB, 335,834, 329,673, 46,948, and 149,225 of merged single sequences translated into valid

amino acid sequences in Gate 1, Gate 2, Gate 3, and Pre-sort, respectively; and for Ala-N-TIMP2LIB, 1,309, 6,564, 527,052, and 252,542 of

merged single sequences translated into valid amino acid sequences in Gate 1, Gate 2, Gate 3, and Pre-sort, respectively. There were

very few variants of Ala-N-TIMP2LIB in Gate 1 (higher affinity than N-TIMP2WT) and Gate 2 (WT-like affinity) due to the significant decrease

(by three orders of magnitude) in affinity caused by the alanine insertion.
4 iScience 27, 110772, September 20, 2024



Figure 2. Affinity screening of the N-TIMP2MIX library by yeast surface display

(A) Illustration of the Ala-N-TIMP2LIB in complex withMMP14 (PDB: 1BUV). The Ala-N-TIMP2 library contains onemutation per clone in seven positions (orange) at

the interface with the N-TIMP2 protein, and an alanine residue insertion (red) at the N terminus of the protein, following the Cys1 position (blue). This alanine

insertion disrupts the interaction of Ala-N-TIMP2 with the Zn2+ ion buried in the MMP catalytic pocket and reduces the binding affinity of Ala-N-TIMP2 for

MMPCAT in the complex.

(B) Schematic representation of yeast-surface-displayed N-TIMP2MIX interacting with the soluble target, MMP9CAT, conjugated to DyLight-650 (blue star). An anti

c-Myc tag antibody (labeled with phycoerythrin [PE; red star]), used to follow the expression of N-TIMP2 variants, is also shown.

(C) Flow cytometry was used to screen and fractionate N-TIMP2MIX variants according to their binding to MMP9CAT (100 nM). The x axis signal corresponds to

yeast surface expression levels (as determined from the PE signal), while the y axis signal corresponds to MMP binding levels (as determined by the DyLight-650

signal). The polygonal shapes represent the three affinity-based sorting gates used to select the YSD library fractions.
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We analyzed the sequence of each variant separately based on its frequency in the three sorted library fractions. Since we were interested

in identifying mutations causing changes in the affinity to MMP9CAT in comparison to the WT in each library, we used the scattering of

N-TIMP2 and Ala-N-TIMP2 as the criterion for choosing which of the sorted gates would be used for analysis of each library (Figure S1).

For example, we used Gate 2, which had N-TIMP2WT-like affinity, to analyze N-TIMP2LIB, together with Gate 1, which had a higher affinity

than Gate 2. Similarly, we based the Ala-N-TIMP2LIB analysis on library fractions that had comparable and higher affinities to that of Ala-

N-TIMP2, i.e., Gate 3 and Gate 2, respectively.

After we had filtered out sequences that did not contain reads in at least one of the gates and sequences with mutations outside the bind-

ing interface, we calculated the frequency of each variant in each gate according to the ratio between the number of reads of each variant and

the total number of reads in its parent library (i.e., either N-TIMP2LIB or Ala-N-TIMP2LIB) within a certain gate (Equation 1; see STARmethods).

This approach allowed us to overcome differences in read coverage, i.e., the number of total reads, in each library. To compare the affinity of

MMP9CAT for each variant to that for N-TIMP2 or Ala-N-TIMP2 in each library, we calculated the normalized frequency (NF) of each variant as

the frequency of that variant normalized to the frequency of the WT N-TIMP2 or Ala-N-TIMP2 within the same sorting gate (Equation 2; see

STAR methods). To scale the binding affinity of each variant to MMP9CAT according to the frequency of that variant in a specific affinity gate,

we calculated the ER of each variant (Equation 3; see STARmethods). Based on the flow cytometry scattering profile of the sortedN-TIMP2MIX

library, we determined the ER values of N-TIMP2LIB variants and those of Ala-N-TIMP2LIB variants separately.We calculated the ER value for N-

TIMP2LIB as the ratio of the NF of an individual variant having higher (Gate 1) and comparable (Gate 2) affinities to that of the WT, or variants

having higher (Gate 2) and comparable (Gate 3) affinities to that of Ala-N-TIMP2, based on the premise that, if a specific mutation enhances

the binding affinity to MMP9CAT, that variant will be more abundant in an upper gate than in a lower gate, resulting in an ER value that is

greater than 1. In opposition, if a mutation has deleterious effects on the binding affinity, it will be less abundant in an upper gate compared

to a lower gate, leading to an ER value that is smaller than 1. Combining all the data obtained from the enrichment or depletion of each variant

(from both N-TIMP2LIB and Ala-N-TIMP2LIB libraries) in the three affinity gates (Gates 1–3) allowed us to cover a broad range of affinities for

N-TIMP2 variants in complex with MMP9CAT.
Training and performance evaluation of our models to predict ER of new N-TIMP2 variants

Since we only observed a subset of all possible single-mutant variants, 98 and 84 of N-TIMP2LIB and Ala-N-TIMP2LIB out of 133 possible var-

iants, respectively, we developed amachine-learning (ML)model to predict the log2 ER of any given variant. To accurately predict variants that

were not observed in either N-TIMP2LIB or Ala-N-TIMP2LIB, we trained two models, designated N-TIMP2MODEL and Ala-N-TIMP2MODEL, to

predict the log2 ER values based on a specific library. To train the two models, we used the dataset of variants that we generated, which in-

cludes single- and multi-mutation variants and their two log2 ER labels (i.e., N-TIMP2LIB and Ala-N-TIMP2LIB labels). For each model, we held

out 20% of high-quality data, of which 10% of the variants were used for tuning hyper-parameters and the other 10% were used for testing the

trainedmodel.We trained themodel on the remaining 80% of variants. During the training process, we employed the logarithmic value of the
iScience 27, 110772, September 20, 2024 5



Table 1. Ki values of the N-TIMP2 variants against MMP9CAT

Clone Ki (nM)

N-TIMP2 (WT) 0.1089 G 0.0181

Ala-N-TIMP2 441.20 G 81.23

N-TIMP2 variant

S4A 0.85 G 0.2a

S4E 15.5 G 1.2a

S4P 1.147 G 0.175

S4Q 1.39 G 0.14a

S4R 0.55 G 0.05a

I35E 2.50 G 0.13a

I35K 0.58 G 0.08a

N38D 0.08965 G 0.00604

N38Q 2.40 G 0.55a

S68M 0.04702 G 0.00714

S68N 0.05521 G 0.00348

S68V 0.02808 G 0.00260

S68W 0.37 G 0.04a

S68Y 0.8 G 0.2a

V71L 0.2033 G 0.0244

V71N 4.68 G 0.08a

V71R 0.6338 G 0.0729

V71W 0.08306 G 0.00801

H97M 0.04943 G 0.00577

H97R 0.02214 G 0.00188

H97C 0.2484 G 0.0312

T99G 0.04742 G 0.00268

T99M 0.0333 G 0.0023

T99Q 0.09534 G 0.00860

T99Y 1.1 G 0.3a

aKi measurements reported in the study of Sharabi et al.1
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read count for each variant for sample weighting. We evaluated the performance of the N-TIMP2MODEL and the Ala-N-TIMP2MODEL in pre-

dicting log2 ERs by the Pearson correlation of predicted and observed log2 ERs.

When comparing multiple ML models on the validation set, in the N-TIMP2MODEL we observed Pearson correlations of 0.9495, 0.8816,

0.8968, and 0.9401 for the neural network, random forest, support vector regression with a linear kernel, and support vector regression

with a polynomial kernel, respectively. In the Ala-N-TIMP2MODEL model, the Pearson correlations were 0.7742, 0.7737, 0.7018, and 0.7411

for the same models, respectively (Figure S3). Thus, due to the improved prediction performance achieved by the neural-network models

compared to the non-neural-network models, we chose the neural-network models to be our N-TIMP2MODEL and the Ala-N-TIMP2MODEL.

Since all models achieved high correlations, we conclude that the high correlations stem mostly from the nature of the dataset. Both the

N-TIMP2MODEL and the Ala-N-TIMP2MODEL achieved high performance on the held-out test set (Figures 3A and 3B), with Pearson correlations

of 0.963 and 0.819, respectively (p values = 2.203 10�107 and 1.973 10�12, respectively), meaning that bothmodels can accurately predict the

observed log2 ERs.
Experimentally validating log2 ER predictions by using purified variants

For a final prediction of log2 ER for a specific variant, we generated predictions for pairs of N-TIMP2 and Ala-N-TIMP2 variants. To this end, we

used both the N-TIMP2MODEL (library with a high initial binding affinity) and the Ala-N-TIMP2MODEL (library with a low initial binding affinity) to

assess the affinity of each of the two versions of each variant, enabling the detection of numerous N-TIMP2 variants that span a very large

range of affinities to MMP9CAT. The sum of the two predicted log2 ERs (from the N-TIMP2MODEL and the Ala-N-TIMP2MODEL that contain

unique complementary information)—which we denote the N-TIMP2MIX_MODEL prediction—represents mutations with a broad spectrum
6 iScience 27, 110772, September 20, 2024



Figure 3. Performance evaluation of the neural-network models

(A and B) Results on a held-out high-quality test set of 10% of the variants for (A) N-TIMP2MODEL and (B) Ala-N-TIMP2MODEL. The Pearson correlation was

calculated between predicted and observed log2 ERs.
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of affinity to MMP9CAT. All N-TIMP2 variants with interface mutations that were not included in the experimental data could be identified by

combining the predictions obtained from these two models (i.e., N-TIMP2MIX_MODEL).

We then validated the affinity constants predicted by the N-TIMP2MIX_MODEL. To this end, the WT protein and 25 variants were used,

namely, 11 variants for which Ki values were available in the literature1 and 14 purified variants for which we determined Ki values, as follows.

The protein variants were expressed in the yeast Pichia pastoris. Use of the pPICZaA plasmid as the expression vector enabled production of

the N-TIMP2 variants with a free N terminus (important for binding to MMP9CAT) and C-terminal His and c-Myc epitope tags (used for

purification and labeling, respectively). We purified the protein variants using affinity chromatography, followed by size-exclusion chromatog-

raphy (SEC) (Figure S4A). Mass spectrometry analysis confirmed the correctmass of the purifiedmutants (Figure S4B), and SDS-PAGE analysis

confirmed their high expression level and purity (Figure S4C). MMP9CAT with an N-terminal His6 tag was expressed in Escherichia coli

Bl21(DE3)pLysS cells using a pET28 vector. The protein was purified by affinity chromatography (Figure S5A), followed by SEC (Figure S5B),

and SDS-PAGE analysis was used to confirm its expression and purity (Figure S5C). To assess in vitro the binding affinity of the N-TIMP2 var-

iants to MMP9CAT, we performed catalytic inhibition assays. In these assays, MMP9CAT was incubated with increasing concentrations of

N-TIMP2WT or one of the purified N-TIMP2 variants, and the cleavage of a fluorescent MMP substrate was determined as a function of

time. The slope of each reactionwas calculated, and the acquired data were fitted bymultiple regression toMorrison’s tight-binding equation

(Equation 5) to determine the Ki value for the binding of each complex.

The Ki value for each variant was normalized to that of N-TIMP2WT from the same experimental set to enable comparison of Ki values ob-

tained in the current study with those from the literature. We note that all the variants were purified without the alanine insertion because our

goal was to identify mutations in N-TIMP2 that change the binding affinity to MMP9CAT (Table 1; Figure 4A). N-TIMP2WT bound to/inhibited

MMP9CAT with a Ki of 108.90 G 18.09 pM, a finding consistent with a previous study.26 As expected, the N-TIMP2 variants spanned a large

range of affinities to MMP9CAT: half of the purified N-TIMP2 variants (i.e., N-TIMP2S68M, N-TIMP2S68N, N-TIMP2S68V, N-TIMP2H97M,

N-TIMP2H97R, N-TIMP2T99G, and N-TIMP2T99M) showed higher affinities compared to the WT, with Ki values 2- to 5-fold lower than that of

the WT. Some variants (i.e., N-TIMP2N38D, N-TIMP2V71W, and N-TIMP2T99Q) showed a small improvement compared to the WT affinity bind-

ing, and some variants (i.e., N-TIMP2S4P, N-TIMP2V71R, N-TIMP2V71L, andN-TIMP2H97C) showed a decrease in binding affinity compared to the

WT affinity.

To further validate the performance of the N-TIMP2MIX_MODEL (i.e., the ability to predict not only the observed log2 ERs of YSD variants but

also the Ki values of purified variants), we held out an independent test set comprising 26 Ki values (not used in our algorithm) (Figure 4B). This

test set included variants over a wide distribution of affinities allowing us to test absolute-affinity prediction performance of variable affinities.

As we did not have sufficient data to train a complex function for a weighted combination of the two models in this Ki-prediction task, we

decided to output the sumof predictions frombothmodels (N-TIMP2MODEL andAla-N-TIMP2MODEL). Individually, eachmodel yielded a lower

correlation of the Ki values to the predicted log2 ER (Pearson’s correlations of �0.494 for the N-TIMP2MODEL and �0.327 for the Ala-N-

TIMP2MODEL) than the sum of the predictions (Pearson’s correlation of �0.545 for the N-TIMP2MIX_MODEL) (p value = 0.004) (Figure S6).

This result demonstrates the ability of the N-TIMP2MIX_MODEL to successfully learn the affinity of unobserved variants (those not used in the

development of the algorithm) and hence to identify variants of N-TIMP2 that were not observed in the original high-affinity complex.
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Figure 4. Inhibition of MMP9CAT by purified N-TIMP2WT and selected N-TIMP2 variants

(A) The cleavage of the fluorescent MMP substrate Mca-Pro-Leu-Gly-Leu-Dpa-Ala-Arg-NH2$TFA by MMP9CAT was measured over time. The initial reaction

velocity was determined at each concentration of inhibitor (0.4–25 nM). The curves were fitted to Morrison’s tight-binding inhibition equation (Equation 5) to

obtain Ki values. Data shown are the averages of independent triplicate experiments, and error bars represent the standard deviation.

(B) Experimental validation of the N-TIMP2MIX_MODEL. We summed the output of the two neural-network models’ predictions to score theWT and the 25 selected

variants.
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Figure 5. Effect of single mutations on the affinity of N-TIMP2 to MMP9CAT

The figure shows a heatmap demonstrating the prediction of the affinity constant (predicted ER) of N-TIMP2 toMMP9CAT. The substituted positions are shown on

the y axis, and the substituting amino acids are shown on the x axis.
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However, the correlation between the DMS log2 ERs (i.e., observed log2 ERs) and Ki values is limited, probably because of the innate differ-

ences between FACS-based YSD protein library affinity screening (DMS and ERs) and affinity measurements of purified proteins in solution;

the former examines the interaction of yeast-anchoredN-TIMP2 variants with a soluble target protein (MMP9CAT), while the latter assesses the

binding between two soluble proteins (N-TIMP2 variant and MMP9CAT).

Identifying positions that affect the affinity of N-TIMP2 to MMP9CAT

To comprehensively investigate the single-mutant binding landscape of the interaction between N-TIMP2 and MMP9CAT, we predicted all

possible single-mutant log2 ERs by using the N-TIMP2MIX_MODEL (Figure 5). Analysis of the binding landscape enabled identification of single

mutations that change the affinity between N-TIMP2 and MMP9CAT across the binding interface of N-TIMP2/MMP9CAT. We identified the

majority of affinity-reducing mutations in position 4 (Figure 5) in agreement with it being a ‘‘hot spot’’ on the N terminus binding region of

TIMP2. We also identified two clear ‘‘cold spots’’ in which there was affinity enhancement for the majority of N-TIMP2 variants with mutations

at positions 97 or 99; these included mutations to methionine, phenylalanine, and aspartic acid.

Effect of data quality on the performance of the ML models

The size and quality of aDMSdataset affect the performance of aMLmodel trainedon it.We aimed to test two factors that could influence the

quality of ourML: the number of mutations in observed variants and the number of sequenced reads. The number of mutations in each variant

controls the variability observed over the dataset and thus affects the ability of the ML model to learn and predict mutations that were not

observed in the data. The number of reads controls the statistical sample size of each variant and consequently the robustness of the log2 ER

values measured in the experiment. We assessed how these experimental factors influence prediction performance of the neural-network

model by resampling in silico the whole N-TIMP2LIB dataset to generate simulated datasets with different numbers of unique variants based

on their number of mutations and different numbers of DNA library sequencing reads. We trained themodels on each simulated dataset and

tested each model on randomly selected held-out test sets.

Training on variants with a singlemutation per variant yielded a low correlation of 0.567, on average, between predicted and observed log2

ERs of variants with multiple mutations. However, including variants with two and three mutations in the training set led to a significant in-

crease in the correlation, i.e., 0.658 and 0.855, respectively. By training themodels with variants containing three or moremutations, the Pear-

son correlation increased to reach a value greater than 0.8 (Figure 6A). With regard to the effect of the number of reads, the model that was

trained on a mere 10% of the data demonstrated the worst performance of all models but still achieved excellent performance, with an

average Pearson correlation of 0.9 (Figure 6B).

This result shows that a diversity of variants and mutations in the training data is crucial as incorporating variants with two or three muta-

tions led to a significant improvement inmodel performance compared to increasing the number of reads. This outcome is consistent with the

phenomenon of epistasis, wherein the collective impact of multiple mutations diverges from the impact that would be expected by simply

adding up their individual effects.27 Specifically, previous findings have demonstrated that beneficial single mutations within the N-TIMP2/

MMP9CAT complex, when incorporated together, result in negative epistasis.28 Therefore, we conclude that training a model on variants

that possess multiple mutations enables the model to better learn the epistatic effect than training on single mutations and as a result its

overall performance will be enhanced.

DISCUSSION

In this study, we introduced a novel approach to accurately and quantitatively predict the impact of numerous N-TIMP2 variants on the bind-

ing affinity in the N-TIMP2/MMP9CAT complex with the goal of comprehensively mapping the affinity landscape of this complex. We gener-

ated two N-TIMP2 mutagenesis libraries, one with high (N-TIMP2LIB) and the other with low (Ala-N-TIMP2LIB) affinity toward MMP9CAT and
iScience 27, 110772, September 20, 2024 9



Figure 6. Prediction performance as a function of the number of mutations in each variant in the training set or the size of the training set

(A) Prediction performance as a function of the number of mutations in each variant in the training set. We evaluated the model on a test set of 10% of the data

containing variants with a high read count (at least 40 reads) excluding variants having singlemutations. For 1 to X (2% X% 7) mutations in each variant, a training

set of 350 variants was randomly selected 10 times (excluding 1 mutation with a randomly selected training set of 80 variants).

(B) Prediction performance as a function of the size of the training set. Results are reported for the same held-out test set of 10% of the variants. A training set of

10%–100% of the rest of the data was randomly selected 10 times (excluding 100% of the data with a fixed training set). The library size of the training sets is shown

as the mean G standard deviation of 10 repeats. We compared the results by Wilcoxon rank-sum test *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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performed affinity-dependent fractional sorting of a mixture of these libraries by flow cytometry. We determined the log2 ERs separately for

each library based on the NGS of the sorted library fractions and trained DNNs to learn the pattern of each library, i.e., which positions and

amino acids aremost important for binding affinity. Implementation of these procedural measures enabled us to predict the affinity (Ki values)

of any N-TIMP2 variant to MMP9CAT, even variants that were absent from the mutagenesis libraries.

To the best of our knowledge, we demonstrate here for the first time that a single mutation in the N-TIMP2 ligand, specifically, an N-ter-

minal alanine insertion, can be used as ameans to overcome the limitation of the narrow affinity range of N-TIMP2 forMMP9CAT. By leveraging

this finding to artificially generate two versions of the same ligand—one having low affinity and the other having high affinity toMMP9CAT—we

were able to use a fixed concentration of the target protein in each affinity sorting screen. By assessing the affinity of each of the two versions

of each variant (high and low affinity) in each affinity sorting fraction, we gathered more comprehensive data on the affinity to the target

compared to assessing only one of the versions and on only a single sorting fraction. This comprehensive approach enabled us to enhance

the accuracy and sensitivity of our affinity predictions and represents an applied solution when experiments (e.g., affinity screens) are possible
10 iScience 27, 110772, September 20, 2024
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only with a fixed, single concentration of the target. In our case, the two versions of the same ligand enabled us to make predictions for var-

iants across a broad range of affinities to MMP9CAT while using a single concentration of MMP9CAT.

We plan to extend our study in multiple directions. First, for future DMS experiments, we plan to increase the variability of the variants

rather than their read depth. We posit that, with greater variability, the model can better learn epistatic effects, which will have a greater

impact on its prediction performance than increasing the read depth to reduce sampling noise (Figures 6A and 6B). Second, we plan to

improve our model by adding additional features, such as structural-based features, solvent accessibility, protein stability, and evolutionarily

conserved information.16,18 Third, we plan to perform additional low-throughput experiments to measure Ki values and to test a different

binning of the sorting gate. These steps may help us to improve our DNN models, currently trained on high-throughput NGS data, for pre-

dicting absolute-affinity values. Moreover, we plan to further improve prediction performance of Ki values by unsupervised learning, e.g., by

using large protein language models.29

Given the difficulties encountered during earlier research involving DMS in predicting novel variants spanning a broad range of affinities,

our ability to predict the affinity of unobserved variants without including them in an experiment is of significant importance to the field of PPI

prediction and for developing therapies targeting these interactions.More generally, we plan to apply our innovative approach tomany other

protein-function datasets as an improved method to provide a rich characterization platform for any PPI affinity landscape. By mapping the

affinity landscape across a wide range of affinities, researchers may gain a more complete understanding of these interactions. Our approach

is also expected to shorten the screening process of protein-based therapeutics. In practical terms, more comprehensive knowledge of

N-TIMP2 protein inhibitor is essential for drug discovery, where understanding the strength of N-TIMP2/MMP9CAT interactions can be critical

for identifying and targeting this interface for optimal inhibition of MMP9, a protease involved in various pathologies.30,31

Limitations of the study

Our study tackled several challenges. First, generating pairs of N-TIMP2 and Ala-N-TIMP2 variants led to measurements of two distinct log2

ERs for each variant. To overcome the challenge of combining the two distinct log2 ERs, we trained two different models (i.e., N-TIMP2MODEL

andAla-N-TIMP2MODEL) to predict the effect of each type of variant in each pair separately. The summation of the two predicted log2 ERs from

the high-affinity N-TIMP2MODEL and the low-affinity Ala-N-TIMP2MODEL, which we denoted the N-TIMP2MIX_MODEL prediction, yielded the

highest correlation with Ki values but is a simple non-parametrized function and thus is likely suboptimal. Second, one of the main limitations

of DMS studies is the partial coverage of the mutation space of a given protein, i.e., not all possible variants are present in the library. We

overcame this limitation by using a state-of-the-art DNN model to predict the activity of any given variant. Our experimental dataset con-

tained 84 and 98 single-mutation variants in N-TIMP2LIB and Ala-N-TIMP2LIB, respectively, covering only 63% and 74% of all possible single

mutations. This partial coverage could be attributed to common challenges encountered during the synthesis of the libraries and subsequent

experiments (e.g., limitation in library transformation yield).16 Since the N-TIMP2MIX_MODEL predicts the binding affinity of any variant of

N-TIMP2, it solves the limitation of partial coverage of the mutation space of a given protein in DMS studies, but, still, it is only a prediction

and not an experimentalmeasurement. Third, the number of repetitions of each variant in a DMS is limited, resulting in specific variants having

too few repetitions to enable accurate calculation of their log2 ERs. Previous studies have addressed this issue by excluding from the training

data variants with reads below a specific quality threshold.16,32 We opted to partition the variants into training, validation, and test sets, while

ensuring that the validation and test sets comprised high-confidence variants, i.e., those with a high number of repetitions. Additionally, dur-

ing the training process, we employed the logarithmic value of the read count for each variant for sample weighting, thereby putting more

trust in high-confidence variants. Still, the sequencing depth we used limited the number of variants we observed and the accuracy of their

observed ER.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

anti c-Myc antibody Abcam Ab32072

goat anti-mouse secondary antibody

conjugated to phycoerythrin (PE)

Sigma-Aldrich P9670

restriction enzyme SacI-HF New England Biolabs 10166195

anti-mouse secondary-antibody

conjugated to alkaline phosphatase

Jackson ImmunoResearch AB_2338528

Bacterial and virus strains

Escherichia coli DH10b bacteria (OriGene Technologies,

MD, USA)

CC100004

Chemicals, peptides, and recombinant proteins

Phusion HF polymerase New England Biolabs M0530S

AmpureXP beads Beckman Coulter A63882

Zeocin Invitrogen R25005

Instant Blue CBS Scientific R-250

Isopropyl b-D-1-thiogalactopyranoside (IPTG) Sigma-Aldrich 367931

Mca-Pro-Leu-Gly-Leu-Dpa-Ala-Arg-NH2$TFA Merck Millipore BML-P276-0001

Critical commercial assays

E.Z.N.A. Yeast Plasmid Mini Kit Omega Bio-tek D6942-00S

HiYield Gel/PCR Fragments Extraction Kit RBC Bioscience YDF100

Access Array barcode library Fluidigm N/A

DeNovix dsDNA High Sensitivity Assay kit DeNovix TN144

MaxiPrep Geneaid N/A

Deposited data

Raw data This paper SRA: PRJNA1071009

Recombinant DNA

pPICZaA construct RBC Bioscience N/A

Software and algorithms

Fast Length Adjustment of Short

reads (FLASH) software

The Center for Computational

Biology (CCB), Johns

Hopkins University

N/A

Code for predicting the affinity

landscape of N-TIMP2/MMP9CAT

This paper https://doi.org/10.5281/zenodo.13294007

Other

Superdex 75 column GE Healthcare Life Sciences N/A
EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

S. cerevisiae EBY100 yeast strain.

yeast Pichia pastoris X-33 strain.

Escherichia coli DH10b bacteria.
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METHOD DETAILS

Generating a mixture of N-TIMP2 and Ala-N-TIMP2 mutagenesis libraries

We generated two N-TIMP2 libraries with different initial affinities to MMP9CAT. We derived the high-affinity library, N-TIMP2LIB, from

N-TIMP2WT mutagenized individually at seven highly tolerant binding-interface positions: 4, 35, 38, 68, 71, 97, and 99 [based on the

N-TIMP2WT gene (PDB ID 1BUV)1,12]. We generated the low-affinity library, Ala-N-TIMP2LIB, based on N-TIMP2LIB, but with an alanine residue

added at the N-terminus of the N-TIMP2LIB gene. We numbered themutated positions in Ala-N-TIMP2LIB according to the N-TIMP2WT gene,

i.e., starting from the cysteine in the first position and ignoring the added alanine residue in the counting.

We mixed the N-TIMP2LIB and Ala-N-TIMP2LIB libraries and expressed the mixed DNA library, i.e., N-TIMP2MIX, in a YSD system using

S. cerevisiae EBY100 yeast strain according to an established protocol. For the construction of this yeast-displayed library, we used the

pCHA-VRC01-scFv vector (obtained from Dane Wittrup, Massachusetts Institute of Technology), such that the N-terminus of the displayed

proteins in the libraries would be distant from the yeast membrane and available for interaction with the target protein MMP9CAT.
33 In the

pCHA-VRC01-scFv construct, we fused the C-terminus of N-TIMP2MIX to the N-terminus of the yeast membrane Aga-2 protein, leaving

the N-terminus of the displayed N-TIMP2 (or Ala-N-TIMP2) library protein variants exposed to the solvent.34

To generate the Ala-N-TIMP2LIB, we designed forward and reverse primers with homology to the sequence of the pCHA-VRC01-scFv vector

and with an overlapping sequence to the N-TIMP2 gene (Table S1). To generate the forward primer, we added a DNA sequence coding for

alanine at the 50 end (at the beginningof the sequence that overlapswith theN-TIMP2 gene).Weperformed a PCR reaction using these primers,

PhusionHFpolymerase (NewEnglandBiolabs, Ipswich,MA,USA), and theN-TIMP2LIB geneas a template. ThePCR reaction is describedbelow.

PCR reaction to generate the Ala-N-TIMP2LIB

The PCR reaction was performed with primers (Table S1), Phusion HF polymerase (New England Biolabs, Ipswich, MA, USA), and the gene

library N-TIMP2LIB as a template. The PCR conditions were as follows: 98�C for 30 s, followed by 35 cycles of 10-s, 20-s, and 11-s incubations

at 98�C, 69�C and 72�C, respectively, and then a 10-min incubation at 72�C. The resulting DNA constructs of the Ala-N-TIMP2LIB were mixed

with those of the N-TIMP2LIB in a 1:1 ratio, giving a mixed DNA library (N-TIMP2MIX). The pCHA plasmid was linearized with the restriction en-

zymes BamHI-HF andNhe-HF (NewEngland Biolabs). The open plasmid (�2 mg) together with�6.8 mg of themixedDNA library (N-TIMP2MIX)

were transformed by homologous recombination into a freshly prepared competent EBY100 Saccharomyces cerevisiae yeast strain using a

MicroPulser electroporator (Bio-Rad,CA,USA), aspreviouslydescribed.35 The transformedyeast cellsweregrown inSDCAAselectivemedium

(2%dextrose, 0.67%yeast nitrogenbase, 0.5%BactoÔCasaminoAcids, 1.47%sodiumcitrate, and0.429%citric acidmonohydrate, adjusted to

pH 4.5) overnight at 30�C to an OD600 of 10.0 (108 cells/mL). The library size was estimated by plating serial dilutions on SDCAA plates (2%

dextrose, 0.67% yeast nitrogen base, 0.5% Bacto Casamino Acids, 1.54% Na2HPO4, 1.856% Na2HPO4$H2O, 18.2% sorbitol, and 1.5% agar).
Yeast-displayed fractional MMP9CAT affinity screens

Library screening was performed as described. The yeast-displayed mixed library N-TIMP2MIX that had been grown in SDCAAmedium over-

night was transferred into the selective SGCAAmedium (2%galactose, 0.67% yeast nitrogen base, 0.5%BactoCasaminoAcids, 1.47% sodium

citrate, 0.429% citric acid monohydrate, adjusted to pH 4.5) for overnight growth at 30�C to induce expression of the library on the surface of

the yeast cells.35 For screening the library against MMP9CAT, �106 of the yeast cells were collected and washed with binding buffer [50 mM

Tris, pH 7.5, 100 mMNaCl, 5 mM CaCl2, and 1% bovine serum albumin (BSA)]. To determine expression levels of the displayed proteins, the

cells were incubated with a primary antibody, i.e., mouse anti c-Myc antibody (Abcam, Cambridge, UK), at a dilution of 1:50, for 1 h at room

temperature. Thereafter, the cells were washed with the binding buffer and incubated with goat anti-mouse secondary antibody conjugated

to phycoerythrin (PE) (Sigma-Aldrich, St. Louis, MO, USA) in a 1:50 dilution, together with soluble DyLight-650-labeled MMP9CAT (purified as

described in the production and purification of N-TIMP2 variants and MMP9CAT section in STARmethods), in the dark for 30 min on ice. The

cells were washed and sorted with a FACSAria (Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev,

Israel). We designed the first sort for enriching the MMP9CAT-binding N-TIMP2MIX population by using 1 mM DyLight-650-labeled MMP9CAT
such that all sorted variants could be detected when incubated with 100 nM MMP9CAT.

We then performed a second sort to generate three library fractions, each having a different binding affinity toward MMP9CAT, such that

the lowermost gate (Gate 3) had anAla-N-TIMP2-like affinity, themiddle gate (Gate 2) had anN-TIMP2WT-like affinity, and the uppermost gate

(Gate 1) included variants with a higher affinity to MMP9CAT than that of the variants in the other two gates. We conducted this fractional sort

using 100 nM fluorescently labeled MMP9CAT. We chose this target concentration of MMP9CAT for the fractional sort based on two consid-

erations: (i) by using the target at an intermediate concentration between the Ki values of the two complexes, N-TIMP2/MMP9CAT and Ala-N-

TIMP2/MMP9CAT, all the variants of N-TIMP2MIX would be included in a single sort; and (ii) the selected concentration would facilitate a broad

scattering of the variants according to their binding signal and hence enable the separation of subpopulations (library fractions) with different

affinities. We then used dual-color flow cytometry for analysis of the mixed library expression and binding to MMP9CAT in an Accuri C6 flow

cytometer (BD Biosciences, San Jose, CA, USA) according to the same labeling protocol as that for the flow cytometry sorting.

HTS of the library fractions

The preparation for the HTS of the library fractions and the filtering process on the HTS data is described. Plasmid DNA was extracted indi-

vidually for each library from the parental pre-sortedN-TIMP2MIX library and the three affinity-sorted library fractions (each yielding�108 yeast
iScience 27, 110772, September 20, 2024 15
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cells) using the E.Z.N.A. Yeast Plasmid Mini Kit (Omega Bio-tek, Norcross, GA, USA) according to the manufacturer’s protocol. The isolated

DNA plasmids of the libraries were run on 1% agarose gel and then purified with the HiYield Gel/PCR Fragments Extraction Kit (RBC Biosci-

ence, Taiwan). The purified DNA plasmid product (�1 ng) of each of the above libraries was used for gene amplification in a PCR reaction,

containing 2% DNA template, 5% forward primer (10 mM), 5% reverse primer (10 mM) (Table S2), 20% Phusion reaction buffer, 2% deoxynu-

cleotide triphosphates (dNTPs), and 1% Phusion HF polymerase (New England Biolabs) in doubly distilled water. The PCR conditions were as

follows: 98�C for 30 s, followed by 35 cycles of 10-s, 20-s, and 11-s incubations at 98�C, 72�C and 72�C, respectively, and then a 10-min incu-

bation at 72�C. The PCR amplified products were run on a 3% agarose diagnostic DNA gel and then purified with HiYield Gel/PCR Fragments

Extraction Kit (RBC Bioscience). These purified PCR products were sent for next generation sequencing (NGS; Hylabs, Rehovot, Israel), in

which a second PCR was performed using the Access Array barcode library (Fluidigm, San Francisco, CA, USA) to add to each sample the

adaptor and index sequences used by the Illumina sequencing technology. Thereafter, the samples were purified with AmpureXP beads

(Beckman Coulter, CA, USA), and their DNA concentrations were determined in a DNA high sensitivity assay performed in a Qubit fluorom-

eter (ThermoFisher Scientific,Waltham,MA, USA) and theDeNovix dsDNAHigh Sensitivity Assay kit (DeNovix,Wilmington, DE, USA). Finally,

the samples were run on a TapeStation (Agilent, CA, USA) to verify the size of the PCR product. The pools were then loaded for sequencing on

an Illumina Miseq (Illumina, San Diego, CA, USA), using the v2 (500 cycles) kit.
Computational analysis of the HTS data

We translated theDNA sequences of the pre-sorted and the three sorted library fractions into the amino acid sequences that they encode.We

then aligned these sequences to the N-TIMP2 sequence. We filtered out sequences of lengths different from the WT length, or sequences

with a stop codon before the end. In the sorted library fractions, we analyzed the sequences of N-TIMP2LIB separately from those of Ala-N-

TIMP2LIB. For each library, we performed the analysis based on two out of the three sorted library fractions to obtain the ratio of the fraction

that increases affinity to the fraction withWT-like affinity, i.e., we analyzed theN-TIMP2LIB based on library fractions having higher (Gate 1) and

comparable (Gate 2) affinities to that of theWT protein sequence in the respective gates. In the samemanner, to analyze Ala-N-TIMP2LIB, we

used two library fractions, one with higher affinity than Ala-N-TIMP2 and the other with Ala-N-TIMP2-like affinity, i.e., Gates 2 and 3, respec-

tively. For each sequence, we counted the number of occurrences of each variant in each library fraction. Then, we calculated the frequency of

each variant, fmuti , as

fmuti =
#reads mutiP1
n
#reads muti

(Equation 1)

where#reads muti is the number of reads of a variant in library fraction i, and
P1

n#reads muti is the sum of the number of all the reads for all

variants in its library (N-TIMP2LIB or Ala-N-TIMP2LIB) in library fraction (gate) i.

Next, to compare the frequencies of each variant to that of the WT in the same library, we calculated NFmuti by

NFmuti =
fmuti

fWT
(Equation 2)

which is the ratio of the frequency of a given variant in library fraction i to the frequency of N-TIMP2 or Ala-N-TIMP2 clones in library fraction

(gate) i.

Based on the NFs, we calculated the ERs of each variant in the N-TIMP2MIX library (separately for N-TIMP2LIB and Ala-N-TIMP2LIB) as

follows:

ERN�TIMP2LIB =
NFmuti Gate1

NFmuti Gate2
and ERAla�N�TIMP2LIB =

NFmuti Gate2

NFmuti Gate3
(Equation 3)

where NFmuti is the NF of a variant in a specific gate.
Merging and filtering the high-throughput sequencing data

An average Illumina quality scorewas calculated for each read in a given set of paired-end reads. Readpairs in which either of the reads had an

average quality score <20 (i.e., the odds that the corresponding base call are incorrect are 1/100) were discarded. The remaining read pairs

were merged into a single sequence by Fast Length Adjustment of Short reads (FLASH) software (The Center for Computational Biology

(CCB), Johns Hopkins University, Baltimore, Maryland, USA).36 This filtering process was applied for the sequences of all libraries.
Dataset

We generated a dataset (Figure 1F) containing the amino acid sequences, their two log2 ER labels (N-TIMP2LIB and Ala-N-TIMP2LIB labels),

and the log2 read count of each variant in each of the library fractions. We represent the sequences as the seven highly tolerant binding inter-

face positions which weremutated in the experiment. In total, this dataset contains 1,878N-TIMP2LIB variants and 466 Ala-N-TIMP2LIB variants

(including multi-mutation variants).
16 iScience 27, 110772, September 20, 2024
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Model architectures

We developed two ER predictors, each an ensemble of multi-layered neural networks. The first predictor was trained over the N-TIMP2LIB
dataset, which we denote as N-TIMP2MODEL, and the second over the Ala-N-TIMP2LIB dataset, which we denote as Ala-N-TIMP2MODEL (Fig-

ure 1G). Each input sequence is one-hot encoded resulting in a matrix of dimensions 20*7. The flattened input matrix is fed into a fully con-

nected layer with 32 and 8 neurons in the N-TIMP2MODEL and Ala-N-TIMP2MODEL, respectively. The output of this layer goes through another

fully connected layer with 4 and 2 neurons (in theN-TIMP2MODEL and the Ala-N-TIMP2MODEL, respectively). Finally, each output is governed by

a single neuron with a linear activation function. We implemented the model using Keras python library with TensorFlow backend (version

2.2.0). The runtime, CPU usage, and maximum memory for training the model on an Intel(R) Xeon(R) Gold 6130 CPU were 61.8 s, 576%,

and 0.26 GB, respectively, for the Ala-N-TIMP2MODEL and 478.7 s, 981%, and 0.26 GB, respectively, for the N-TIMP2MODEL.

Selection of model hyper-parameters

To train themodels and select the optimal hyper-parameters, we excluded 10%of the data from the training set and used it as a validation set.

We held out another 10% of the data to use as a test set. The validation set and the test set both contained variants with a high read count (40

and 100 in N-TIMP2LIB and Ala-N-TIMP2LIB, respectively) to obtain high-quality and reliable test sets. We chose the hyper-parameter values

using a random search over 100 randomhyper-parameter combinations with a pre-defined range for each parameter (Table S4).We chose the

hyper-parameter values that lead to the highest Pearson correlation on the validation set of each model separately.

Training and evaluation of the models

Once the hyper-parameters had been set, to increase model robustness, we used the random-ensemble-initialization approach, where we

trained 10 models over the same data but with different randomly initialized weights and different random orders in which the data was used

for model training in batches. We used the log2 sum of read counts of each variant over all gates as the sample weight in the training process

so as to place greater reliance on variants with a large statistical sample (a large number of reads). Then, for prediction, we used as the output

the average of the predictions of the 10 trained models. To evaluate the prediction ability of two models, we calculated the Pearson corre-

lation between the predictions and the experimental log2 ER values of a held-out test of 10% of the data. We denote the sum of the two pre-

dicted log2 ERs (from N-TIMP2MODEL and Ala-N-TIMP2MODEL) as N-TIMP2MIX_MODEL prediction.

Validation of the model predictions

To experimentally validate the N-TIMP2MIX_MODEL predictions, we used experimentally obtained Ki values as an independent test set, on

which the models were neither developed nor trained. This set comprised 26 Ki values, including those for the WT and for 7 purified variants

determined in this study (see below), those for 7 purified variants reported in a previous study,12 and those for 11 variants with Ki values taken

from the literature.1 Ki values for all variants, including those taken from the literature, were determined using the same method (described

below under "catalytic activity and inhibition assays" subsection). Each test-set variant contains a single mutation in one of the seven residue

positions mutated in our library (i.e., positions 4, 35, 38, 68, 71, 97, and 99). Out of these variants, 15 showed a decrease in affinity while 10

variants showed an increase in affinity compared to the WT, whose Ki value was determined in the same experiment. We calculated the cor-

relation between the Ki values and the predictions. Since we used Ki values of proteins purified in different purification systems, in different

sets of experiments and in different laboratories, we normalized each Ki measurement to the Ki value of the WT in the same experiment and

used the log2 transformation of these values.

Evaluation of prediction performance as a function of data characteristics

To evaluate theN-TIMP2MODEL performance as a function of the number of mutations in each variant in the training set, we used a random test

set of 10% of the data (excluding variants with single mutations so that they appear only in the training set) that comprised of variants with a

high read count (40 repetitions) to obtain high-quality and reliable test sets. For X (1 % X % 7) mutations within each variant, we randomly

selected a training set of 350 variants, each having at most X mutations (excluding 1 mutation with a training set of 80 variants). To evaluate

the performance of N-TIMP2MODEL as a function of the training data size, we used the same test set of 10% of the data. We randomly selected

a training set of X% (10%X% 100) of the rest of the data (excluding 100%of the data with a fixed training set). After training of eachmodel, we

evaluated it in terms of the Pearson correlation between the predictions and the experimental log2 ER values of the test set. We repeated the

training and evaluation process 10 times for each X, and report the mean and standard deviation of the Pearson correlation.

Generating N-TIMP2 variants by site-directed mutagenesis

The evaluation of prediction performance as a function of data characteristics is described in this and the next two subsections. For purifica-

tion of the variants, the pPICZaA construct, containing the N-TIMP2 gene26 with the AOX1 promoter at its N-terminus and a hexahistidine tag

at its C-terminus, and the Zeocin resistance gene, was used. The plasmid was propagated in Escherichia coliDH10b bacteria (OriGene Tech-

nologies, MD, USA) and then purified with a HiYield plasmidmini kit (RBC Bioscience). Thereafter, a site-directedmutagenesis procedure was

carried out to generate theN-TIMP2 variants in a PCR reaction using specific primers (Table S3). These primers contained the codon encoding

the desired amino acid mutation in the middle of their sequence, and 15 bp flanking the codon from each side of the primer, which were

complementary to the template N-TIMP2 DNA sequence. The PCR mixture comprised 2% plasmid DNA template (�50 ng), 5% forward
iScience 27, 110772, September 20, 2024 17
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primer (10 mM), 5% reverse primer (10 mM), 20% Phusion HF buffer, 3% DMSO, 2% dNTPs, and 1% Phusion HF polymerase (New England

Biolabs) in doubly distilledwater. The PCR conditionswere as follows: 98�C for 3min followedby 25 cycles of 10-s, 30-s and 10-min incubations

at 98�C, 55�C–65�C (depending on the specific primer) and 72�C, respectively, followed by a 10-min incubation at 72�C. Thereafter, the PCR

products were loaded on a diagnostic 1% agarose gel to verify the procedure’s success by detecting bands of the correct size, and then trans-

formed into competent E. coliDH10b. The transformed bacteria were plated on LB agar plates containing 50 mg/mL Zeocin (Invitrogen, Grand

Island, NY, USA). Plasmidswere extracted from several bacterial colonies, and the correct sequence with the insertedmutationwas verified for

each N-TIMP2 variant (Genetics Unit, National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Israel).
Production and purification of N-TIMP2 variants and MMP9CAT

To purify the selected N-TIMP2 variants, we used the yeast Pichia pastoris X-33 strain (which upon induction secretes proteins into the growth

medium), according to the pPICZa protocol (Invitrogen, Carlsbad, CA, USA) withminormodifications. In brief, for preparing a sufficient quan-

tity of plasmids from each N-TIMP2 variant, the transformed E. coli DH10b cells containing the plasmids were grown overnight at 37�C in

300 mL of LB medium containing 50 mg/mL Zeocin (Invitrogen), and the plasmids were extracted using MaxiPrep (Geneaid, New Taipei

City, Taiwan). Thereafter, �100 mg of plasmids from each variant were linearized with the restriction enzyme SacI-HF (New England Biolabs)

and then transformed into freshly prepared electro-competent P. pastoris X-33 according to the pPICZa protocol (Invitrogen). The trans-

formed yeast cells, each containing a different N-TIMP2 variant, were grown on YPDS plates (18.2% sorbitol, 2% peptone, 2% D-glucose,

2% agar, 1% yeast extract and 50 mg/mL Zeocin) for 72 h at 30�C. N-TIMP2 variants were purified as previously described26: For each

N-TIMP2 variant, 10 yeast colonies were selected and grown overnight in 5 mL of BMGY medium (2% peptone, 1% yeast extract, 0.23%

K2H(PO4), 1.181% KH2(PO4), 1.34% yeast nitrogen base, 43 10�5% biotin, 1% glycerol) at 30�C, and then transferred into 5 mL of BMMYme-

dium (2% peptone, 1% yeast extract, 0.23% K2H(PO4), 1.181% KH2(PO4), 1.34% yeast nitrogen base, 43 10�5% biotin, 0.5%methanol) for pro-

tein induction of 72 h, with the addition of 1%methanol once a day in the last 2 days. Overexpression of the secreted proteins was determined

by western blot, using a 1:3000 dilution of mouse anti-His6 primary antibody (Abcam), followed by a 1:5000 dilution of anti-mouse secondary-

antibody conjugated to alkaline phosphatase (Jackson ImmunoResearch, West Grove, PA, USA), and detection by incubation in 2 mL of

5-bromo-4-chloro-3-indolyl phosphate reagent (Sigma-Aldrich). For large-scale production of the proteins, the yeasts expressing the

N-TIMP2 variants and exhibiting the highest protein expression, were grown in 50mL of BMGYmedium overnight, followed by 72 h of growth

in 500 mL of BMMYmedium, with daily additions of 1%methanol. The proteins were purified by centrifugation of the yeast cell suspension at

3800 3 g for 20 min and filtration of the supernatant, followed by the addition of 300 mM NaCl and 10 mM imidazole at pH 8.0. The super-

natant was incubated for 1 h at 4�C, centrifuged at 3800 3 g for 10 min, filtered using a 0.22-mm cutoff, and then loaded on nickel-nitrilotri-

acetic acid-Sepharose beads (Invitrogen), followed by washing with 50 mM Tris, pH 7.5, 300 mMNaCl and 10 mM imidazole, and elution with

20mL of 50mMTris, pH 7.5, 300mMNaCl and 250mM imidazole. The elution fractionwas concentrated in a Vivaspin centrifugal concentrator

with a 5-kDa cutoff (GE Healthcare Life Sciences, Pittsburgh, PA, USA). The proteins were then further purified using a Superdex 75 column

(GE Healthcare Life Sciences) with elution buffer (50 mM Tris, pH 7.5, 300 mMNaCl and 5 mMCaCl2) in an ÄKTA Pure instrument (GE Health-

care Life Sciences). SDS-PAGE analysis on a 15% polyacrylamide gel under reducing conditions was then performed for the purified proteins.

Bands were visualized by staining with Instant Blue (CBS Scientific, CA, USA). Purified protein samples were subjected to mass spectrometry

analysis (Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Israel), and protein concentrations

were determined by UV–Vis absorbance at 280 nm, using a NanoDrop Spectrophotometer (Thermo Fisher Scientific), with an extinction co-

efficient (ε280) of 13,325 M�1 cm�1 for N-TIMP2 and all its variants.

The human MMP9 catalytic domain (MMP9CAT), lacking the fibronectin-like domain (residues 107–215 and 391–443), was purified as pre-

viously described,37 with the followingmodifications: TheMMP9CAT gene was expressed in E. coli Bl21(DE3)pLysS cells in a pET28 vector (with

an N-terminal His6 tag) and induced with 1 mM isopropyl b-D-1-thiogalactopyranoside (IPTG) (Sigma-Aldrich) overnight at 30�C. The cells

were harvested and subjected to three rounds of sonication and centrifugation at 12,000 3 g to isolate the inclusion bodies. The inclusion

bodies were solubilized in 8 M urea and 25 mM Tris, pH 7.5. Thereafter, the protein was loaded onto a nickel column and eluted with 8 M

urea, 25 mM Tris, pH 7.5, 30 mM NaCl and 200 mM imidazole. The eluted protein was refolded by slow dialysis over 3 days at 4�C with a

gradient of decreasing urea concentrations, from 8M to 0 M. Finally, the enzyme was purified by size exclusion on a Superdex 75 (GE Health-

care Life Sciences) gel filtration column with buffer containing 20 mMTris, pH 7.5, 50 mMNaCl and 5mMCaCl2. TheMMP9CAT concentration

was determined by UV-Vis absorbance at 280 nm, using a NanoDrop Spectrophotometer (Thermo Fisher Scientific), with an extinction coef-

ficient (ε280) of 33,920 M�1 cm�1. The process yielded �0.1 mg protein per liter of culture cells. The purity of MMP9CAT was determined by

SDS-PAGE analysis. For flow cytometry, the purifiedMMP9CAT was fluorescently labeled for 1 h at room temperature with DyLight-650 Amine

Reactive Dye (Thermo Fisher Scientific), which contains an N-hydroxysuccinimide ester that forms a covalent bond with primary amines, as

previously described.26
Characterization of MMP9CAT

The catalytic activity (Km value) of the purified MMP9CAT enzyme was determined by measuring 0.5 nM MMP9CAT activity against different

concentrations (0–50 mM) of the fluorogenic substrate Mca-Pro-Leu-Gly-Leu-Dpa-Ala-Arg-NH2$TFA [where Mca is (7-methoxycoumarin-4-

yl)acetyl, Dpa is N-3-(2,4-dinitrophenyl)-L-2,3-diaminopropionyl and TFA is trifluoroacetic acid)] (Merck Millipore, CA, USA) in TCNB buffer

(50 mM Tris-HCl, pH 7.5, 100 mM NaCl, 5 mM CaCl2, and 0.05% Brij). Fluorescence was monitored for 1 h using a Synergy 2 plate reader
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with 340/30 excitation and 400/30 emission filters (BioTek, Winooski, VT, USA) at 37�C. The data was fitted to the Michaelis-Menten equation

(Equation 4) using GraphPad Prism 7 (San Diego, CA, USA).

V =
Vmax ½S�
Km+½S� (Equation 4)

where V - enzyme velocity; Vmax - enzyme maximum velocity achieved at maximum substrate concentration; S - substrate concentration, and

Km – the Michaelis-Menten constant.

The calculated value of Km (6.175 G 0.528 mM) was obtained from three independent experiments.

The catalytic activity of the fluorescently labeled MMP9CAT enzyme was confirmed in an assay performed in TCNB buffer with a final con-

centration of 15 mM of the fluorogenic substrate Mca-Pro-Leu-Gly-Leu-Dpa-Ala-Arg-NH2$TFA.
Catalytic activity and inhibition assays

N-TIMP2 and its variants were tested for their inhibitory activity against 0.2 nMMMP9CAT. To this end,MMP9CAT was incubated with 0.4–25 nM

WTN-TIMP2 orN-TIMP2 variants, or with 3.9–1000 nMAla-N-TIMP2, in TCNBbuffer for 1 h at 37�C. Thereafter, the fluorogenic substrateMca-

Pro-Leu-Gly-Leu-Dpa-Ala-Arg-NH2$TFA was added to the reaction mixture at a final concentration of 15 mM. Fluorescence was monitored

(with 340/30 excitation and 400/30 emission filters) using a Synergy 2 plate reader (BioTek) at 37�C. The reactions were followed spectroscop-

ically for 60 min, and initial rates were determined from the linear portion of the increase in the fluorescence signal caused by the cleavage of

the fluorescent substrate. The data was globally fitted by multiple regression to Morrison’s tight-binding inhibition equation (Equation 5) us-

ing GraphPad Prism 7.

Vi

V0
=

1 � �½E�+½I�+Kapp
i

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�½E�+½I�+Kapp

i

�2 � 4½E�½I�
q
2½E� (Equation 5)

where Vi - enzyme velocity in the presence of an inhibitor; V0 - enzyme velocity in the absence of an inhibitor; E - enzyme concentration; I -

inhibitor concentration and Kapp
i - the apparent inhibition constant, which is given by Equation 6:

Kapp
i = Ki

�
1 +

½S�
Km

�
(Equation 6)

where S - inhibitor concentration; Km – the Michaelis-Menten constant, and Ki - the inhibition constant.

The inhibition constant, Ki, was calculated by plotting the initial velocities against different concentrations of the inhibitors. Ki values are

given as means G SE for three independent experiments.
QUANTIFICATION AND STATISTICAL ANALYSIS

For performance evaluation of the DNN models a Pearson correlation was calculated between predicted and observed log2 ERs. Details

(including the exact value of n) are given in Figure 3 and its legend.

For the determination of the inhibition ofMMP9CAT by purifiedN-TIMP2WT and selectedN-TIMP2 variants, the inhibition curves were fitted

toMorrison’s tight-binding inhibition equation (Equation 5) obtainKi values. Data shown in Figure 4 are the averages of independent triplicate

experiments, and error bars represent the standard deviation. Details (including the exact value of n) are given in Figure 3 and its legend. For

the experimental validation of the N-TIMP2MIX_MODEL similar statistical parameters are provided.

For the prediction performance as a function of the number of mutations in each variant in the training set and the size of the training set,

the library size of the training sets is shown as the meanG standard deviation of 10 repeats. We compared the results by Wilcoxon rank-sum

test *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. Details are given in Figure 6 and its legend.
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